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Abstract — The EM-FAST feasible adjoint sensitivity
technique has been proposed for use with frequency domain
electromagnetic solvers. It employs finite differences to
approximate the derivatives of the system matrix with respect
to the design parameters. Here, we propose to estimate and
update these derivatives by the classical Broyden technique.
This significantly accelerates the response sensitivity analysis
when EM-FAST is used for gradient-based optimization.
Regardless of the number of design parameters, the response
sensitivity is obtained with computational overhead negligible
in comparison with the system analysis. Our EM-Broyden
technique is illustrated through the optimization of a Yagi-
Uda antenna.

I. INTRODUCTION

Design. sensitivity information is crucial in gradient-
based optimization. Its purpose is to estimate the gradient
of the system’s response with respect to the design
parameters,

A feasible adjoint sensitivity technique (FAST) based
on finite-difference approximation of the Jacobian of the
system was first applied to nonlinear circuits {1]. Recently,
a FAST has been proposed for applications with fuil-wave
EM solvers (EM-FAST) (2),[3]. It applies finite
differences to approximate the derivatives of the system
matrix with respect to the design parameters and
subsequently uses them to estimate the response
sensitivities.

Here, we propose the use of the Broyden update [4], [5]
for the estimation of the system matrix derivatives. Thus,
the computational overhead due to the sensitivity
calculations is reduced approximately by a factor of n, the
number of design parameters, in comparison with the EM-
FAST during a design optimization process.

We start with a brief overview of the EM-FAST and its
computational requirements. Then, we describe Broyden’s
update of ithe gradients of the elements of the systém
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matrix to accelerate the performance of the sensitivity
analysis algorithm. We illustrate the implementation of the
algorithm with the method of moments (MoM) in the
optimization of the input impedance of a Yagi-Uda
antenna,

I1. ADJOINT SENSITIVITY ANALYSIS

We focus on frequency-domain EM computational
approaches. In the MoM, the system of equations arising

from the discretization of a linear EM problem is
Z(n)I =V ¢

where x =[x,---x,] is the vector of design parameters,

" I=[L-I,T is the state variable vector (complex-valued
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current densities), and V is the corresponding global
excitation vector. The design parameters are related to the
geometry and/or the materials of the structure. Z is the
system matrix whose complex coefficients depend on the
design parameters. We now represent (1) as an equivalent

real-valued system:
RZ -SZ7R1 _[%V
3z %z || 31 |sv]
In (2), R and I denote the real and the imaginary parts,
respectively, of a complex-valued quantity. Thus we can
arrive at a sensitivity expression for complex linear

systems using an algebraic approach for real-valued
systemns [6]. For brevity, we introduce the notation

7 RZ -3Z7 7 RiI v RV 3
"[Sz RZ } r—[m} ’ [SV] @
The size of Z, ,I, and V, in the real system is twice the
size of Z, I and V in the complex system.

The predefined scalar function f(x,7(x)) can
represent a response function of the linear system or an
objective function in an optimization problem, We assume
that this function is differentiable. The objective is to
determine the gradient of f{x,T(x)) at the current
solution I of (1) with respect to the design parameters x:
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V. f, subjectto Z(x)I =V 4
We define gradient operators as row operators, €.g.,
of of of
V. f=|s— =— -~ . 5
o [axl ox,  ox, ®

When the gradient operator acts on a vector, eg. V, the
result appears in the form

WMo
ox ox,
v.y=| : : (6)
ov, av,
ox dx,
Following straightforward matrix manipulations, the
response sensitivity V, f is expressed as [2], [3], [6]
Vof =Vif +11[VV,-V.(2,T)] N

Here, V¢ f reflects only the explicit dependence of fon x.
The matrix V.V, would typically be analytically available.
In fact, the excitation is often insensitive to changes in the
design parameters, i.e., V.V, =0.In V(Z,1,), I, is a
constant vector representing the solution of (1) at the
current design in the form given by (3). The vector

if=v,r-z; (8)

is the real-valued adjoint variable vector. Clearly, it is a
solution to the real-valued system of equations

Z/f, =1V, 57 . ©)
We can represent I, as
.| RP
I = 1. (10)
31

This defines the complex-valued adjoint variable vector
I'. The real-valued system (9) can now be expanded as

{snzr SZT}[W
gf

=327 RZT
which is equivalent to the complex-valued system

}=[wa vafll A

Z4F=[v, /T . (12)

Here, Z" is the Hermitian transpose of Z, and
Vif =V f+jVaf, j=V-1. Equation (12) defines
the complex-valued adjoint problem. 1t is characterized
by: (i} a matrix which is the Hermitian transpose of that of
the original problem; and (ii) an excitation which is the
gradient of the response function with respect to the state
variables. Equations {7) and (12) represent the essence of
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the adjoint variable approach in the case of complex-
valued linear system sensitivity analysis.

Notice that the solution to the adjoint problem (12) adds
very little overhead to the analysis at the current design.
The LU factored Z¥ matrix is easily obtained from the
LU factored Z matrix, thus avoiding a second system
analysis. The overhead is due only to the forward-
backward substitution in (12).

HI. ACCELERATED OPTIMIZATION USING BROYDEN’S
UPDATE

‘We write (7} explicitly as

of . d°f ov, dZ, - | .
_ r - TI
dx; dx; * ox; } !

ax ; ’

FT

d

7 12,...,n. (13)

Here, the partial derivative d/dx; is applied to every
element of the respective vector or matrix. The matrices
0Z/3x;, (i=1,..,n) in V.(ZI) may be analytically
available. If this is not the case, one can resort to the finite-
difference approximation aZ/ax; (i=1,...,n). In both
cases, the computation of the derivatives of Z is
computaticnally expensive because it requires the
equivalent of n additional Z-matrix fills. This overhead
becomes significant when Z is large.

The Broyden update refers to a rank-one formula
proposed by Broyden [4],[5]

Flx,+h)-F{x,)-Gh, W
x

G,=G +
f 231 k h,fhk

(14)

where. G, is an approximation of the Jacobian V_F at
x,, and G,,, provides an updated Jacobian. F is the
vector of functions under consideration, and A, is an
increment vector. The values of F at x, and {(x, +J;) are
assumed available. The updated approximation G, ,
satisfies the equation

F(x, +h)-F(x,)=G,h, (15)

In other words, G, provides a perfect linear

interpolation between the two points x, and (x, +h,}.

In our problem, F is a vector that consists of all the
elements of the Z, matrix, and G, is a matrix that
consists of the derivatives of the elements of the Z,
matrix. To construct the vector F, we stack all the columns
of* Z, in a vector, therefore, when Z is an (mXxm) matrix,
Z, is a (2mx2m) matrix, and F is a vector with am?
elements. A row of the matrix G, contains the derivatives
of the respective element of the vector F(x,) with respect

toall design parameters. Therefore, G, is a (4m’xn)
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Fig. 1. The geometry of the Yagi-Uda array.
matrix. The vector k, has n elements corresponding to the
increment in the design parameter space.

Using the Broyden update leads to faster estimation of
the consecutive dZ /dx; matrices in an iterative manner. In
comparison with the EM-FAST, which uses the finite
difference approximation for aZ/ax;, this approach
reduces the overhead significantly. Its computational
requirements are much smaller compared to a matrix fill.
The response and its gradient are obtained by a single
system analysis regardless of the number of design
parameters n. The Broyden-FAST approach does not
require modifications of the EM analysis algorithms.
During optimization, the derivatives of the Z matrix with
respect to all design parameters are approximated using
the Z matrix of the previous step, the Z mairix of the
current step and the Z matrix gradient from the previous
step. Thus, the Z matrix is filled only once per design
iteration.

The approximate Jacobians generated by Broyden’s
update may be less accurate than those obtained by finite
differences. Hence, the optimization may require more
steps to reach a selution.

Broyden {4] has shown that for quadratic functions the
update converges and reduces the overall computaticnal
effort. Although such properties cannot be proven for a
general nonlinear problem, Generally, the Broyden update
gives sufficient accuracy for mildly nonlinear functions.
This property can be exploited when the behavior of the Z
matrix coefficients with respect to geometrical
perturbations is prediclable in order to improve the
accuracy of the matrix derivative estimation. Such an
approach, however, is solver-dependent.

Broyden’s update has been used in a number of
applications such as gradient-based optimization where
analytical sensitivities are not available {5], the aggressive
space mapping technique [7], etc.
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TABLE1I
OPTIMIZATION OF THE INPUT IMPEDANCE OF THE Y AGI-

UDA ARRAY
K IZn Stn ¥ap R;n Xgn f
T1 0450 0200 0340  28.576 9977 0.6237
2 0300 0400 0400 67312 -20.849  0.2960
3 0320 0400 0400 67308 -20072  0.2858
4 0390 0400 0.400 69.081  -14.573  0.2067
5 0600 0212 0.342 67.008 2373 0.0883
6 0495 028 0371 75457 5742 0.0856
7 0455 0.285 0.367 78.479 2,108 0.0804
8§ 0547 0220 0369  70.149 2.485 0.0518
9 0544 0.241 0340  70.879 0.798  0.0310
10 6521 0.261 0.353 75.229 0.116  0.0306°
11 0539 0240 0356 72.435 0.706  0.0124

IV. ILLUSTRATIVE EXAMPLE

The initial design of a six-element Yagi-Uda antenna is
given in Fig. 1. All dimensions are normalized with
respect to the free-space wavelength A. We vary the
normalized length I, =L, /Adand the normalized
separations s, =5;/A  and s, =5/4, e,
x =[b, 5, 5,7 . We now proceed with the optimization
of the Yagi-Uda antenna for an input impedance of

Z, =73 Q. The objective function is defined as

=1Zin__zi.

1==7

(16)
The progress of the optimization is summarized in
TABLE I The gradient-based optimization routine of

MATLAB® finincon is used. An optimal solution is
recached in ten iterations. At each design iteration, we
update the 9Z®/dl,,, 0Z%* /ds, and OZ%*}/ds,,

matrices using (14). They are substituted in (7) to compute
the response sensitivities.

The results are compared with the sensitivities generated
by the original EM-FAST, which employs forward finite
differences to approximate the system matrix derivatives.
We emphasize that the optimization is driven by the
gradient estimates provided by the Broyden-FAST. The
EM-FAST sensitivities are calculated off-line only for
validation. Both sensitivity curves are plotied in Figs. 2, 3
and 4. The Broyden update needs an initial value for the
gradient at the start of the optimization. It is calculated by
forward finite differences. Therefore, the sensitivity at the
first step is the same for both EM-FAST and Broyden-
FAST. In the next few steps, Broyden-FAST sensitivity
values deviate from the EM-FAST values but, as the
optimization progresses, they converge to the EM-FAST
values. It is evident that our approach based on the
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Fig. 2. Comparison of the sensitivity of the objective function
with respect to the length of the driven element I;, between
Broyden-FAST and the original EM-FAST.
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Fig. 3. Comparison of the sensitivity of the objective function
with respect to the separation s, between Broyden-FAST and
the original EM-FAST.

Broyden update produces sufficiently accurate sensitivity
results for the purposes of gradient-based optimization.

V. CONCLUSION

A new adjoint based method to design sensitivity
analysis with MoM is proposed in which the Broyden
formula accelerates the estimation and update of the
derivatives of the system mairix. We show that the
Broyden update is efficient, problem-independent and
sufficiently accurate for the purpose of gradient-based
optimization. It allows the computation of the system
response and its gradient in the design parameter space
through a single system analysis when it is integrated with
the feasible adjoint sensitivity technique. The overhead
associated with the gradient estimation is negligible in
comparison with the computational requirements of one
full-wave analysis. It is reduced even further than both the
exact adjoint method and FAST, with respect to which it is
validated.

302

]
. o
! ]
1
1 1
et s
1 |
[ Sy T
1 [N
UL L
I’{fl
NN RS
ff i
| 1 Y
P R
At
b= -
1 | 1
“Z-"“I'——»——
| I | I ' ' | 1
25 i 1 L | L 1 t ] 1
1 2 ]

5 B 7
Tteration number

Comparison of the sensitivity of the objective function

8

B

Fig. 4.
with respect to the separation §3, between Broyden-FAST and
the original EM-FAST.
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