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Abstract - Tbe EM-FAST feasible adjoint sensitivity 
technique has been proposed for use with frequency domain 
ektmmagnetic solvers. It employs finite differences to 
approximate the derivatives of the system matrix with respect 
to the design parameters. Here, we propose to estimate and 
update these derivatives by the classical Broyden technique. 
This significantly accelerates the response sensitivity analysis 
when EM-FAST is used for gradient-based optimization. 
Regardless of tbe number of design parameters, tbe response 
sensitivity is obtained with computational overhead negligible 
in comparison with tbe system analysis. Our EM-Broyden 
technique is illustrated through the optimization of a Yagi- 
uda antenna. 

I. 1N?R0DUCTI0N 

Design sensitivity information is crucial in gradient- 
based optimization. Its purpose is to estimate the gradient 
of the system’s response with respect to the design 
parameters. 

A feasible adjoint sensitivity technique (FAST) based 
on finite-difference approximation of the Jacobian of the 
system was first applied to nonlinear circuits [l]. Recently, 
a FAST has been proposed for applications with full-wave 
EM solvers (EM-FAST) [2],[3]. It applies finite 
differences to approximate the derivatives of the system 
matrix with respect to the design parameters and 
subsequently uses them to estimate the response 
sensltlvltles. 

Here, we propose the use of the Broyden update [4], [5] 
for the estimation of the system matrix derivatives, Thus, 
the computational overhead due to the sensitivity 
calculations is reduced approximately by a factor of n, the 
number of design parameters, in comparison with the EM- 
FAST during a design optimization process. 

We start with a brief overview of the EM-FAST and its 
computational requirements. Then, we describe Broyden’s 
update of the gradients of the elements of the systim 
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matrix to accelerate the performance of the sensitivity 
analysis algorithm. We illustrate the implementation of the 
algorithm with the method of moments (MOM) in the 
optimization of the input impedance of a Yagi-Uda 
a”tenna. 

II. ADIOWT SENXTI~ITY ANALYSIS 

We focus on frequency-domain EM computational 
approaches. In the MOM, the system of equations arising 
from the discretization of a linear EM oroblem is 

Z(x)Z = v 0) LU 
Cl= 

where x = [x1.. .x.1’ is the vector of design parameters, 
I = [Z, Z,,,lr is the state variable vector (complex-valued 
current densities), and V is the corresponding global 
excitation vector. The design parameters are related to the 
geometry and/or the materials of the structure. Z is the 
system matrix whose complex coefficients depend on the 
design parameters. We now represent (1) as an equivalent 
real-valued system: 

In (2). % and 9 denote the real and the imaginary parts, 
respectively, of a complex-valued quantity. Thus we can 
arrive at a sensitivity expression for complex linear 
systems using an algebraic approach for real-valued 
systems [6]. For brevity, we introduce the notation 

The size of Z, , I, and V, in the real system is twice the 
size of Z, I and V in the complex system. 

The predefined scalar function f(x,l(x)) can 
represent a response function of the linear system or an 
objective function in an optimization problem. We assume 
that this function is differentiable. The objective is to 
determine the gradient of f (x,T(x)) at the current 
solution Z of (1) with respect to the design parameters x: 
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V,f, subject toZ(x)l = V (4) the adjoint variable approach in the case of complex- 
We define gradient operators as row operators, e.g., valued linear system sensitivity analysis. 

Vf= afdf...df 
[ 1 

Notice that the solution to the adjoint problem (12) adds 

(5) 
very little overhead to the analysis at the current design. 

x ax, ax2 ax, The LU factored ZH matrix is easily obtained from the 
LU factored Z matrix, thus avoiding a second system 

When the gradient operator acts on a vector, e.g. V, the analysis. Tbe overhead is due only to the forward- 
result appears in the form backward substitution in (12). 

III. ACCELERATED OPTMZATION USING BROYDEN’S 
(6) UPDATE 

We write (7) explicitly as 

Following straightforward matrix manipulations, 
response sensitivity V,f is expressed as [2], [3], [6] 

v,f=v:f+i:[v,v,-v,(z,ir)] 

the $=$J*i:[%-2i,], i=1,2 ,__., n (13) 

(7) Here, the partial derivative al&, is applied to every 
element of the respective vector or matrix. The matrices 

Here, V:f reflects only the explicit dependence offon x. 
The matrix V,V, would typically be analytically available. 
In fact, the excitation is often insensitive to changes in the 
design parameters, i.e., V,V, =O In V,(Z,r,) , r, is a 
constant vector representing the solution of (1) at the 
current design in the form given by (3). The vector 

aZ/a+ (i=l,...,n) in V,(ZF) may be analytically 
available. If this is not the case, one can resort to the finite- 
difference approximation AZ Inn, (i = l,...,n) In both 
cases, the computation of the derivatives of Z is 
computationally expensive because it requires the 
equivalent of n additional Z-matrix tills. This overhead 
becomes significant when Z is large. i: =V,,f.Z;' (8) 

is the real-valued adjoint variable vecfor. Clearly, it 
solution to the real-valued system of equations 

zfi, = W,,fl’ 

We can represent i, as 

i, = YG L 1 3i’ 

is a 

(9) 

(10) 

This defines the complex-valued adjoint variable vector 
i The real-valued system (9) can now be expanded as 

[-E ~:][~]=muf V,,.fl’ (11) 

which is equivalent to the complex-valued system 

ZHi = [V,flT (12) 

Here, Z” is the Hermitian transpose of Z , and 
V,f=V,f+jV3,f, j=fi. Equation (12) defines 
the complex-valued adjoint problem. It is characterized 
by: (i) a matrix which is the Hermitian transpose of that of 
the original problem; and (ii) an excitation which is the 
gradient of the response function with respect to the state 
variables. Equations (7) and (12) represent the essence of 

The Broyden update refers to a rank-one formula 
proposed by Broyden [4],[5] 

where G, is an approximation of the Jacobian V,F at 
xk 3 and Gxt, P rovides an updated Jacobian. F is the 
vector of functions under consideration, and h, is an 
increment vector. The values of F at xk and (x~ + h,) are 
assumed available. The updated approximation Gk+, 
satisfies the equation 

F(x,+h,)-F(x,)=G,+,h, (15) 

In other words, Gk+, provides a perfect linear 
interpolation between the two points xI and (x~ +h,) 

In our problem, F is a vector that consists of all the 
elements of the Z, matrix, and G, is a matrix that 
consists of the derivatives of the elements of the Z, 
matrix. To construct the vector F, we stack all the columns 
of’ Z, in a vector, therefore, when Z is an (mxm) matrix, 

Z, is a (2mx2m) matrix, and F is a vector with 4mZ 
elements. A row of the matrix Gk contains the derivatives 
of the respective element of the vector F(x,) with respect 

to all design parameters. Therefore, G, is a (4m’xn) 
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I,/1 I,/1 Id/A 5,/A Q//l a/A 
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Fig. 1. The geometry of the Yogi-Uda ;irray. 

matrix. The vector hk has n elements corresponding to the 
increment in the design parameter space. 

Using the Broyden update leads to faster estimation of 
the consecutive az lax, matrices in an iterative manner. In 
comparison with the EM-FAST, which uses the finite 
difference approximation for AZ /AX;, this approach 
reduces the overhead significantly. Its computational 
requirements are much smaller compared to a matrix fill. 
The response and its gradient are obtained by a single 
system analysis regardless of the number of design 
parameters n. The Broyden-FAST approach does not 
require modifications of the EM analysis algorithms. 
During optimization, the derivatives of the Z matrix with 
respect to all design parameters are approximated using 
the Z matrix of the previous step, the Z matrix of the 
current step and the Z matrix gradient from the previous 
step. Thus, the Z matrix is tilled only once per design 
iteration. 

The approximate Jacobians generated by Broyden’s 
update may be less accurate than those obtained by finite 
differences. Hence, the optimization may require more 
steps to reach a solution. 

Broyden [4] has shown that for quadratic functions the 
update converges and reduces the overall computational 
effort. Although such properties cannot be proven for a 
general nonlinear problem, Generally, the Broyden update 
gives sufficient accuracy for mildly nonlinear functions. 
This property can be exploited when the behavior of the Z 
matrix coefficients with respect to geometrical 
perturbations is predictable in order to improve the 
accuracy of the matrix derivative estimation. Such an 
approach, however, is solver-dependent. 

Broyden’s update has been used in a number of 
applications such as gradient-based optimization where 
analytical sensitivities are not available [5], the aggressive 
space mapping technique [7], etc. 

TABLE1 
OFTIMIZATION OF THE INPUT IMPEDANCE OF THE YAGI- 

UDA ARRAY 

K 12. Sl" b Rin Xin f 
-1 0.450 0.200 0.340 28.576 -9.977 0.6237 

2 0.300 0.400 0.400 67.312 -20.849 0.2960 
3 0.320 0.400 0.400 67.308 -20.072 0.2858 
4 0.390 0.400 0.400 69.081 -14.573 0.2067 
5 0.600 0.212 0.342 67.008 -2.373 0.0883 
6 0.495 0.286 0.371 75.457 5.742 0.0856 
7 0.455 0.285 0.367 78.479 2.108 0.0804 
8 0.547 0.220 0.369 70.149 2.485 0.0518 
9 0.544 0.241 0.340 70.879 -0.798 0.0310 
10 0.52, 0.261 0.353 75.229 0.116 0.0306' 
t1 0.539 0.240 0.356 72.435 0.706 0.0124 

IV. ILLUSTRATIVE EXAMPLE 

The initial design of a six-element Yagi-Uda antenna is 
given in Fig. 1. All dimensions are normalized with 
respect to the free-space wavelength /1. We vary the 
normalized length lZn = I, 11 and the normalized 
separations s,, = s, IA and SZn = s, l/1, i.e., 
x = [/2n sin sZ,,lT We now proceed with the optimization 
of the Yagi-Uda antenna for an input impedance of 
Tin = 73 R The objective function is defined as 

The progress of the optimization is summarized in 
TABLE I. The gradient-based optimization routine of 
MATLAB@ fmincon is used. An optimal solution is 
reached in ten iterations. At each design iteration, we 
update the JZ@) /al,, , 8Zck) /as,, and aZtk) /as,, 
matrices using (14). They are substituted in (7) to compute 
the response SenslwLtles. 

The results are compared with the sensitivities generated 
by the original EM-FAST, which employs forward finite 
differences to approximate the system matrix derivatives. 
We emphasize that the optimization is driven by the 
gradient estimates provided by the Broyden-FAST. The 
EM-FAST sensltwmes are calculated off-line only for 
validation. Both sensitivity curves are plotted in Figs. 2, 3 
and 4. The Broyden update needs an initial value for the 
gradient at the start of the optimization. It is calculated by 
forward finite differences. Therefore, the sensitivity at the 
first step is the same for both EM-FAST and Broyden- 
FAST. In the next few steps, Broyden-FAST sensitivity 
values deviate from the EM-FAST values but, as the 
optimization progresses, they converge to the EM-FAST 
values. It is evident that our approach based on the 
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Fig. 2. Comparison of the sensitivity of the objective function 
with respect to the length of the driven element i2. between 
Broyden-FAST and the original EM-FAST. 

Fig. 3. Fig. 3. Comparison of the sensitivity of the objective function Comparison of the sensitivity of the objective function 
with respect to the separation s,,, between Broyden-FAST and with respect to the separation s,,, between Broyden-FAST and 
the original EM-FAST. the original EM-FAST. 

Broyden update produces sufficiently accurate sensitivity 
results for the purposes of gradient-based optimization. 

V. CONCLUSION 

A new adjoint based method to design sensitivity 
analysis with MOM is proposed in which the Broyden 
formula accelerates the estimation and update. of the 
derivatives of the system matrix. We show that the 
Broyden update is efficient, problem-independent and 
sufficiently accurate for the purpose of gradient-based 
optimization. It allows the computation of the system 
response and its gradient in the design parameter space 
through a single system analysis when it is integrated with 
the feasible adjoint sensitivity technique. The overhead 
associated with the gradient estimation is negligible in 

Fig. 4. Comparison of the sensitivity of the objective function 
with respect to the separation ~2~ between Broyden-FAST and 
the original EM-FAST. 
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